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The differences between subcritical liquid drop  and supercritical fluid drop behavior are shown to be a direct conse- 

quence of the length scales near the fluid drop boundary. Under subcritical, evaporative high emission rate conditions, 

a film  layer  is present in the inner part of the  drop surface which contributes to  the unique determination of the bound- 

ary conditions; it is this film  layer in conjunction with evaporation which  gives to  the solution it’s convective-diffusive 

character. In contrast, under supercritical conditions the boundary conditions contain a degree of arbitrariness due 

to the absence of a physical surface, and  the solution has  then  a purely diffusive character. Results from simulations 

of a free  fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, 

large drop experiments at high, low and  intermediary  temperatures and in a range of pressures encompassing the 

sub- and supercritical regime. Despite the difference  between the conditions of the simulations and  the experiments, 

the time rate of variation of the  drop  diameter  square is remarkably well predicted in the linear curve regime.  Con- 

sistent with the optical measurements, in the simulations the drop diameter is determined from the location of the 

maximum density gradient. Detailed timewise comparisons between simulations and  data show that this location 

is  very  well predicted at  0.lkqPa. As the pressure increases, the  data  and simulations agreement becomes  good to 

fair, and  the possible reasons for this discrepancy are discussed. Simulations are  further conducted for a small drop, 

such as encountered in practical applications, over a wide range of specified, constant far field pressures. Addition- 

ally, a transient pressure simulation crossing the critical point is also conducted. Results from these simulations are 

analyzed and  major differences  between the sub- and supercritical behavior are explained. In particular, it is  shown 

that  the classical calculation of the Lewis number gives erroneous results at supercritical conditions, and that an 

effective  Lewis number previously defined  gives correct estimates of the length scales for heat  and mass transfer at 

all pressures. 



1. Introduction 

The behavior of fluids under a wide range of pressures is of both fundamental and  great practical interest. Oil 

in underground reservoirs is naturally  stored at  very high pressures, and as it is extracted  it eventually reaches the 

atmospheric pressure. Two examples of practical situations in which  fluids experience large changes in pressures in 

a very short  time are Diesel engines and  aircraft engine combustion chambers. In both cases the energy that powers 

the engine is produced by the burning of atomized hydrocarbons with air;  the word ‘atomized’ is here used in a very 

general sense to mean the disintegration of a fluid without reference to any particular configuration or  mechanism. 

According to well-established thermodynamic theory (Hirshfelder et al. (1964), Prausnitz  et al. (1986), American 

Petroleum Institute  (1992)), once either the reduced pressure (p,. = p / p c )  or the reduced temperature (T,. = T/T,-) 

are larger than unity (the subscript c denotes ‘critical’), in the ( p ,  V, T )  system of coordinates  there is  no  longer the 

possibility of a two phase region, and instead  there is  only a single-phase  region (Hirshfelder et  al. (1964)). Here p ,  T 

and V are  the  temperature, pressure and volume respectively, and  the subscript T denotes ‘reduced’. The general 

term for the substance is  fluid (neither  a gas nor a liquid) and  it is in a supercritical state. Considering that the 

critical pressure of most  fuel hydrocarbons used in these engines  is in the range of 1.5 - 3 MPa,  and  the fact that 

the maximum pressure attained in the combustion chamber is about 6 MPa, it is clear that  the fuel will experience 

both  subcritical and supercritical conditions during the operation of the engine. 

Despite the fact that supercritical fluids occur both in nature  and in industrial  situations,  the fundamentals of 

their behavior is not well understood because supercritical fluids  combine the characteristics of both liquids and 

gases, and therefore their behavior is not intuitive.  There  are several specific reasons for the lack of understanding: 

First,  data from (mostly optical) measurements can be very  misleading  because regions of high density thus observed 

are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify 

‘drops’ and ‘ligaments’,  the observed fluid must be in a liquid state.  This inference  is incorrect because in fact optical 

measurements detect any large change (i.e. gradients) in density. Thus,  the density ratio may be well  below 0(103) 

that characterizes its liquid/gas value, but  the measurement will still identify a change in the index of refraction 

providing that  the change is sudden (steep  gradients). As shown by simulations of supercritical fluids of Harstad  and 

Bellan (1998a), under certain conditions the density gradients may remain large during  the  supercritical binary fluids 

Inixing, thus making them optically identifiable. Therefore, there is no inconsistency between the  optical observation 
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;I liquid-liko densit,y, it is appropriate to model i t  as R liquid. Howavcr, such Huids  may have  liquid-like densities while 

thcir transport properties differ  from those of a liquid. Table 1 shows  t,he percent ratio of the thermal conductivity 

of  Huid propane compared to  that of the liquid at  the same  temperature.  The calculations were  performed  using the 

plotted values of Reid et al. (1987) (Fig. 10-5) . Since propane has a relatively large p ,  (42.5 bar),  the values  of p ,  are 

rather low compared to  the corresponding ones for hexadecane (a neat fuel representative of Diesel fuel) at  the same 

p because p ,  of hexadecane is  much  lower (14.1 bar). Following the procedure for calculating conductivities at large 

p , . ' ~  knowing the conductivity at the same T,. but at a lower p ,  (American Petroleum Institute (1992), procedure 

12A4.1 ) ,  one finds that  the discrepancy increases with increasing p,. and T,, that is with increased pressure and fluid 

heating. Therefore, although a fluid under supercritical conditions may  have a liquid-like density, it is not appropriate 

to model it as a liquid not only because the  equation of state will  be incorrect (and thus  the density change in response 

to  the fluid heating will  be  different  from that of the liquid),  but also because a fluid heats  up differently from a 

liquid. In fact, it is not only the thermal conductivity which has a different value, but most important,  the  transport 

matrix of a general fluid has additional  terms coupling the species and energy equations  through  temperature  and 

molar fraction gradients, respectively. Harstad and Bellan (199813) have  shown that as a result of these additional 

terms, under supercritical conditions the effective length scales  for heat  and mass diffusion increase and decrease 

respectively in comparison with those at subcritical conditions. This indicates that  the mathematical solution of the 

system of equations might have  different characteristics in the subcritical and  supercritical regimes. 

Studies of drop behavior over a wide range of pressures were  performed in the  past (Yang et al. (1994), Delplanque 

and Sirignano (1993), Haldenwang et  al. (1996), and  the review of Givler and Abraham (1996)), however  none  of 

these studies identified the crucial differences  between the subcritical and  supercritical behavior. In  fact, in two  of 

these studies (Yang et al. (1994), Haldenwang et al. (1996)), it was found that  the subcritical  and supercritical 

behavior  is similar as the drop diameter decreased according to  the classical d2-law (Williams (1965)) over a wide 

range of pressures and  drop  diameters, d. 

The present study is devoted to  the exploration of differences  in fluid-behavior characteristics under subcritical 

and supercritical conditions in the  particular case of fluid drops; the fluid drop case was selected because  of the 

availability of experimental observations for  model validation. We show  in particular that  the d2-law  is  obeyed  only 

in the  subcritical regime. Section 2 below presents a brief summary of our model (Harstad  and Bellan (1998a)) based 

upon fluctuation theory; the details of our model can be found i n  Harstad  and Bellan (1998a) and  Harstad  and 
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Dollall ( 19981)). In Scctioll 3 we expand our previous supercrit,icd calculation (H;wst,ad a ~ t l  Bclltitl (19'3811)) o f  t ,lw 

H u i t i  drop radius t,o include the subcritical regime; in particular, we show that there is a major difference  between the 

subcritical and  supercritical behavior  which  is intimately related to the length scales near the fluid drop boundary. 

Results from simulations are compared in Section 4 to  data for heptane-drops in nitrogen at high, intermediate and 

low temperatures and in the 0.1 - 5 MPa pressure range, and  the theory is validated. The comparison with high 

temperature experimental data allows us to  fist determine  the value of the assumed constant  thermal diffusion factor; 

once this is done, the value  is  confirmed at intermediate  temperatures by comparing with  the data,  and further model 

validations are conducted with this value at  low temperatures. We further present numerical predictions for small 

drop sizes  in  high temperature surroundings (which are of practical interest in the combustion chambers of propulsion 

systems and for  which detailed data for validation do  not  exist) at both  constant and varying pressure crossing the 

critical point of the fluid, and offer comments regarding the difficulties of performing calculations crossing the critical 

point. Finally, Section 5 is devoted to conclusions. 

2. Model equations 

The configuration studied is that of a single spherical drop in a medium with specified far field conditions. These 

far  field  values are identified by the subscript 'e' and  the location of the far  field boundary, R,(t), where R is a 

specified radial location, is calculated in a Lagrangian way to be that of null mass flux. 

The conservation equations are based upon Keizer's fluctuation theory (Keizer (1987)) which has  the  distinct 

advantage of formally accounting for non-equilibrium processes. This formalism therefore leads to  the most general 

fluid equations where the  partial molar  fluxes, J i ,  for species i ,  and the heat flux, 7, are  related to thermodynamic 

quantities as follows: 

+ 

"+ 
N N 

J i = LiqVP - LijV(ppj) ,  7 = LqqVp - LqjV(ppj) (2.1) 
j j 

where /3 l/(R,,T) and N is the  total number of species; the expression  in eq. 2.1 is called the Irwing-Kirkwood 

(IK) form (Sarman and Evans (1992)) of the heat flux.  Here R,, is the universal gas constant, p j  is the chemical 

potential of species j ,  Li, are  the Fick's  diffusion elements, L,, is the Fourier thermal diffusion element, Li,  are  the 

Soret diffusion, L,j are  the Dufour diffusion elements, and  the Onsager relations state  that Li, = Lji and Li, = Lqi. 



Using the tllermodynamic relationship 

where 

c r ~ i j  ,DX,api/aXj = aXi/aXj + X$ln yi /aXj  (2-5) 

one can calculate J i and 7 from 2.1 and 2.2, providing that  the elements, Lij, can be calculated. Here vj,  hj,  Xj,and 

yi  are  the  partial molar volume, enthalpy, molar fraction and activity coefficient, respectively, while v and  h  are  the 

total molar  volume and enthalpy, respectively. The coefficients C Y D ~ ~  are called mass diffusion factors, and  yi cpi/cpg 

where cp is the fugacity coefficient and the  superscript o denotes the  pure (Xi = 1) limit. 

+ 

The  transport  matrix  has  the advantage of allowing a natural definition of the  transport coefficients therefore 

relating its elements to measurable/calculable quantities.. Thus, a thermal conductivity is  defined  by XIK z PL,,/T 

(subscript I K  designates quantities  related to this form of the heat flux). However, XIK does not correspond to  the 

kinetic theory (subscript K T )  thermal conductivity because in particular  it is not the only coefficient of VT in 7; 
the significance of this observation is discussed below.  Also related to  the  transport  matrix, two transport coefficient 

matrices may  be  defined: a symmetric diffusion  coefficient matrix, Dm,ij, and  an  antisymmetric  thermal diffusion 

factor matrix, C Y I K , ~ ~ ,  through 



L,i = X i  ~ ( m j / m ) n ~ D m , L j .  (2.8) 

Here n, Yj and mj are  the molar density, species mass fraction and  the species  molar mass, while m is the average 
j # i  

molar m a s  of the mixture. Thus,  the knowledge of X I K  and  the D,,ij and C X I K , ~ ~  matrices allows the calculation of 

the  transport  matrix. 

In terms of these new matrices, the general form of the molar fluxes for i E [I,  N ]  is 

where 

and  the form of the  heat flux is 

7 = -XiKVT - nR,,T(D,VInp + caqkvxk) 
k 

where X;, is another form of the IK thermal conductivity 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 



where p is the mass density, u is the radial velocity, t is the time and r is the  radial  coordinate. 

-momentum conservation 

where rrr = ( 4 / 3 ) ~ [ d u / d r  - u / r ]  is the  stress tensor and Q is the  mixture viscosity. 

-species conservation 

Dy,  ”$ 
p -  Dt = -rniV. J i  

where D / D t  E d / d t  + u(d/dr) .  

-energy equation 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

where C, is the mixture molar heat capacity at constant pressure, a, = [ (av /dT) , ,~ , ) /v  is the thermal expansion 

ratio,  and a, = (4/3)q(du/dr - ./.I2 is the viscous dissipation. 

2.2. Relationship  between  kinetic  theory  and  measured  values of X and ( Y I K , ~ ~  for multicomponent  mixtures 

As mentioned above, XIK in eq. 2.1 might not be the quantity measured in experiments determining thermal con- 

ductivities because it is not the coefficient of the  temperature gradient in the heat flux expression; this expression 

has Soret term  contributions from the molar  flux (the cross terms) that also contain temperature gradients. Another 

form of the heat flux is given by the Bearman-Kirkwood (BK) expression (Sarman and Evans (1992)) 



N N 

where according to eq. 2.2 

V(Ppj) - hjVP = PvjVp + (Caoj iVXi) /Xj .  (2.22) 
i 

If one defines a BK thermal conductivity by XBK pZ,,/T, this is  now the only coefficient of the  temperature 

gradient in the BK form of the heat f l u x ,  eq. 2.21. In  the same manner as C X I K , ~ ~ ,  one may  define BK thermal 

diffusion factors a ~ ~ , i j  by 

PLYq G xi 1 cYBK,ijnqDm,ij. 

j # i  

Tedious but  straightforward calculations show that for a multicomponent system 

(2.23) 

X B K  = - (P/T) C(hi /mi  - hj/mj)Y,qaBK,ijDm,ij. (2.24) 
i > j  

but neither XBK nor X i K  coincide with the kinetic theory  thermal conductivity in the low pressure limit, and therefore 

cannot be considered to be an appropriate definition of the thermal conductivity. However, if one defines a thermal 

conductivity, X ,  through the relationship 

(2.25) 

then X has the distinctive property that in the low pressure limit it consistently becomes AKT (i.e. lim,,oX = XKT; 

see Chapman and Cowling, 1970); it also has the property that non-negative entropy  production requires X 2 0. 

Moreover, it can be shown that 

(2.26) 

where 

ah,ij 3 (mimj/m)(hi/mi - hj /mj) / (&T) ,  (2.27) 

and  that limp-o(aBK,ij) = Q K T , ~ ~ .  Note that crossterms vary  in 7 as C Y I K , ~ ~ ,  and those in J i and q vary as 
-+ 7? 

Q B K , i j .  

For a pure substance, X B K  = XIK = X;, = X (= XKT);  however, this is no longer the case for mixtures. Therefore, 
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Thermal diffusion factors have  been calculat,ed by Vogelsang and Hoheisel (1988) and by Sarman  and Evans (1992) 

using  Molecular Dynamics theory; these calculations are very computationally-intensive. Thermal diffusion ratios for 

ternary mixtures are rarely reported,  an exception being Kuldip et al. (1983) for a N e  - Ar - K r  gaseous mixture. 

Measurements of thermal diffusion factors have  been made either in thermodiffusion cells (Bert  and Dupuy-Philon 

(1997); Li et al. (1994)) or in thermogravitational columns (Bou-Ali et al. (1998); Ecenarro et al. (1993); Ecenarro 

et al. (1990)). Each of these systems presents some  difficulties  for performing the measurements. For example, 

thermal diffusion  cells measurements may be affected by convective  effects or by the long time needed to achieve 

uniformity in the two  cells, whereas thermogravitational measurements are affected by parasitic convective  effects 

and nonuniformities in the wall temperature. Generally, measured values of either C Y B K , ~ ~  or C Y I K , ~ ~  are very scarce 

(see tabulated values in Bird et al. (1990); Chapman and Cowling (1970)), and  although some data exists near the 

critical point (Ecenarro  et al. (1993)), we are  not aware of extensive comprehensive data  at supercritical conditions. 

Therefore, the value of C Y B K , ~ ~  or C Y I K , ~ ~  must be determined from comparisons with  experimental data (see below). 

For a binary mixture Dm,12 is the binary diffusion  coefficient Dm and 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 



(?Uti-  = (Z[K - ' ? f L  (2.34) 

and since ah may  be either positive or negative and have a relatively large magnitude (e.g. the Lo, - Hz system 

Harstad  and Bellan (1998b)), ~ r g ~  and CYIK may  have  very  different  values. 

These considerations show that it is essential to understand  the intricacies of the  transport  matrix in order to enable 

quantitative calculations that can be validated by experimental observations. Some of the results presented below 

investigate these intricacies even further by exploring the determination of C Y ~ K  and CYIK from existing measurements 

over a wide range of ( p ,  T )  in conjunction with model validation. 

3. Boundary conditions for a binary  mixture 

The detailed boundary conditions at T = R d ,  where R d  is the  drop  radius, have been derived in Harstad  and 

Bellan (1998a) and  are here only summarized. The subscripts b and d indicate the  drop  boundary  and  drop related 

quantities, respectively, and  the superscripts L and G refer to  the initial heptane and nitrogen side of the drop 

boundary, respectively. 

-mass balance 

p c ( ~ f  - d R d / d t )  = P:(u: - d R d / d t )  (3.1) 

-relationship between and  the emission  flux Fern, 

By definition of the mass emission flux, Few, = - ( l / A d ) d M / d t ,  where M is the  drop mass and A d  is the  drop 

boundary area, which  is consistent with 

-heat balance 

q:b - q k b  = - { I h f  f ( h f  - h f ) x $ ] / m c  - Iht + ( h f  - hk)X$]/m"}Ferns (3.3) 

where h? = h;(pb, Tb, x:) , hj" = h;(pb, Tb, x,",) and hf - hf is the molar heat of evaporation whereas h f  - h i  is 

the heat of solution. The subscript T stands for radial component. 

- balance of species 1 (chosen to be heptane) flux 

m l ( J g , b  - J k , b )  = (yh - Y$)Ferns (3.4) 



where nzequil ' s  are calculated from thermodynamic relationships (Prausnitz  et al. (1986)).  UT^ is the mean  molecular 

velocity  crossing a plane in one direction, and cya, are accommodation coefficients. The expressions for nzequil 's are 

Additional equations at T = R d  are  the momentum and  the mixture  equation of state which  is  used  twice  (once on 

each side of the boundary). Since u t  is calculated by integrating the continuity equation inside the drop, there is a 

total of eight equations and nine unknowns: uF,X&, X g ,  p;, p f  , R d ,   T b ,  p b  and Ferns; a ninth independent relationshp 

exists only under subcritical conditions, as discussed below. 

The indeterminacy of the boundary conditions for a fluid drop under supercritical conditions has already been 

discussed by Harstad  and Bellan (1998a). This is  physically understandable since there is no true surface, and  thus 

there is an arbitrariness as to  the choice of the boundary to follow. At least three choices are reasonable: One  may 

follow the pure fluid boundary as was done by Harstad  and Bellan (1998a). Another possibility is to follow the 

initial boundary separating the two fluids, this being the choice in the present calculation. The  third possibility is to 

follow the point of maximum density gradient;  although  this is not the present choice, the point of maximum density 

gradient is calculated here d posteriori to indicate  the location of the optically identified fluid drop. In  contrast, 

under subcritical conditions the boundary to follow  is the  drop surface and  the problem is  fully determined. 

There  are  other  important consequences of the existence or lack of a surface at T = R d .  For example, under strong 

evaporative conditions a mass fraction 'film'  layer exists inside the  drop (Law and Law (1981)) and  the thickness 

of this layer, Sy << AT- where AT- is the distance from the surface to  the first grid point inside the drop. A 

detailed analysis (Harstad  and Bellan (1998b)) shows that  an effective mass diffusivity D,f f  can be defined as shown 

below, with the consequence that  the film  layer exists when F,,, >> pD, f f /Ar- .  The value of D e f f  and  that of an 

equivalent X,ff were calculated under the quasi-steady assumption in Harstad and Bellan (199813)  by finding a set 

of  two linear combinations of T and Yl for  which  eqs.  2.19 and 2.20 can be approximately diagonalized. The radial 



(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

a h  E (mlm2/m)(hl/ml - h 2 / m 2 > / ( & T ) .  (3.14) 

Once the  equations for T and Y1 are  diagonalized,  the  characteristic  length scales for diffusional transport of the new 

set of variables are  apparent,  and  this allows the definition of D,f f  and Aeff 

where 



with 

WT = cTmlC,BJ/rn and w y  = -act P 

where o is the positive root of the second order algebraic equation 

(3.18) 

(ml /m)CpB~Cia2 + [Ab - (ml/m)C,A~]o - 1 = 0 (3.19) 

the  other  root being unphysicd as it leads to singular behavior. These equations also allow the calculation of an 

effective  Lewis number, Le, f f  3 A,ff/(nC,D,fr) once the d u e s  of the dependent variables are known. The quasi- 

steady assumption does not remove the generality of the estimate since its essence  is that of a characteristic length. 

One of the most important consequences of the mass fraction film layer existence is the direct relationship that 

exists between Y , ( R d  - E )  and Y , ( R d  + E )  , where E <<< max(6y , S T ) ;  it is this  relationship which provides the needed 

additional  equation to fully determine the solution at  the drop surface. This  relationship can be formulated by 

considering the difference AY; Y t ( &  - E )  - Yt(Rd - AT") where Yt(Rd - AT-) represents the computational 

grid center value at  the first adjacent position to  the film  layer inside the drop  such that Ar- >> 6y .  Similarly one 

may  define ATL = TL(& - E )  - TL(Rd - Ar-) .  The variable E j  exp(cp: - cp?) quantifies the 5 jump across the 

drop surface and can be calculated from the  state equation. For example, under strict equilibrium evaporation (i.e. 

Ferns = 0) conditions, t j  = 1. For finite F,,, and for a binary mixture, its  ratio  to a reference state F,.,f(<, , E2) can 

be  defined by 

(3.20) 

where 



which  provides the additional relationship between x k ( R d  - E )  and x ? ( &  + E )  and allows closure of the system of 

equations at  the  drop boundary. 

Since under supercritical conditions the concept of latent  heat,  and therefore of evaporation, is not applicable 

[(h? - h f )  -t 0 as the critical point is approached], the above analysis does not hold. However, the film  layer 

computational  approach is still necessary if the grid Peclet number Pegrid 2 0 ( 1 )  in  order to insure that all scales are 

resolved. Therefore, the formalism of the fiim layer is retained for computational purposes even under supercritical 

conditions, although the layer no longer exists physically. This is accomplished by a generalization of the layer 

equations so that  the limit Ferns + 0 yields the form of the equations without the layer. Essentially, the solution 

in the supercritical regime has a diffusive character, whereas in the subcritical regime it  has a diffusive-convective 

character where the convective part is introduced by the film  layer and  the evaporation. 

At &(t)  the dependent variables are specified. 

4. Numerical method 

The primitive variables are p ,  T, X3 (or q) ,  and u, however, the equations are  analytically  manipulated to facilitate 

calculations. For convenience, the density derivatives in eq. 2.17 are replaced using the relationship 

N 
dlnp = -a,dT + KTdp + x ( m j / m  - Vj/V)dXj (4.1) 

1 

where KT = -(l/v)(dv/dp)T,x, is the isothermal compressibility.  Combining eqs. 4.1,  2.17, 2.19 and 2.20 yields 

where 

with 



where p ,  is the imposed thermodynamic pressure and ?;tgrid is the grid vector. For implicit calculations of 2, 

numerical accuracy requires either a grid size AT such that I kUAr I < <  1 or d ”+ d T g T i d / d t .  For a very large 

gradient region, this is  resolved by a semi-implicit mixing of k ,, with its last step value. The quantities p ,  av,  KT 

and v~j are calculated from the  state equation. 

”+ 

The equations are discretized in a finite difference form, and  to insure computational  stability we  use variable 

upwind  differencing of the convection terms  in regions of large gradients. the degree of upwinding is based on 

matching the fdm  layer results. To insure computational accuracy, the T coordinate is  given by a time dependent 

grid,  and  due to expected  sharp gradients the grid spacing is smallest near the  drop boundary. The grid motion 

is determined by fixing one boundary at  the initial interface, and by choosing the outermost boundary, R,(t), to 

follow the fluid motion (Lagrangian far field boundary); dR,/dt = U ( T  = Re).  Relative to  the local grid motion, the 

effective convection velocity is thus (u - dT,,id/dt). The boundary conditions are satisfied at the  drop center (null 

gradients)  and at  the far field boundary (specified  values of the dependent variables). The thermodynamic variables 

are calculated at grid cell centers, whereas the velocity and fluxes are calculated at grid cell boundaries (Roache 

(1976)). 

Since M a  << 1, the pressure is calculated as p ( ~ ,  t )  = p e ( t )  + i ( T ,  t )  where p,(t) is  specified and p’ ( T ,  t )  is a small 

perturbation calculated from the momentum equation. At any time  step,  the solution is found by iterating in two 

sequential pairs. The first pair is u and i representing the flow dynamics; the second pair is T and YI representing 

the flow thermodynamics. An iterate of the flow dynamics pair is done in two steps:  First, eqs. 4.2 and 4.3 are used 

to calculate u with the very small i being neglected. Second, eq. 2.18 is  used to  calculate whose  value relative 

to p ,  is smaller than  the numerical error tolerance.. The second  pair of variables, (TI Y I )  is obtained by iteratively 

solving  eqs. 2.19 and 2.20 as a pair of coupled convection-diffusion equations. The difference equations for the time 

dependent vectors of cell center (T, Y l )  values are  thus in the form of coupled matrix  equations. To satisfy the  jump 

conditions at the  drop boundary, we modify the matrix elements that are  related to cells at the drop boundary 

according to eqs. 3.1 - 3.6 and  the film  layer equations. 

During any particular  time  step, an  iterate is accomplished by a two stage process: first,  there is a partial explicit 
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tiltlo step predictor, followed by  a11 implicit time step corrector (which requires a matrix  iteration based  on the 

Tllomas algorithm for inverting tritiiagonal matrices (Anderson et al. (1984))). Because the  time  constant associated 

wi th  eq. 3.5 is very small, the equations are very stiff, and therefore during each time step  iterate  a  separate  iteration 

is necessary to calculate the boundary conditions as explained above. These conditions are  then used  in the radial 

velocity calculations and in the formation of the (T,  Yl) vector pair matrices. During each simulation, the  time  step 

is adjusted dynamically based upon the previous time step convergence. 

5. Results 

The present simulations are performed for an n-heptane  drop in nitrogen because it  is  the  set of binary substances 

which  is best documented experimentally. The  equations of state have been calculated according to  the procedure 

described in Harstad  et al. (1997), and  the calculation of properties has been described in Harstad  and Bellan 

(1998a). The purpose of these simulations is first to validate the model, and  then to explore parametric regimes of 

practical interest that  are unavailable experimentally such as the small size drops  typical of gas turbine combustors 

and Diesel engines. Since  all droplet data spanning subcritical to supercritical regimes is for large drops, our first 

set of simulations are for these conditions. The only data  that can be used  for comparisons is that obtained under 

evaporative rather  than burning conditions, since in the last case the flame temperature  that  acts as the far field 

boundary is unknown. Furthermore, as shown  below, it is only microgravity data  that can be considered valid  for these 

comparisons because normal gravity data has unavoidable convective  effects that  are  not modeled here. Additionally, 

since all high pressure microgravity drop evaporation experiments were performed with suspended drops, even these 

data  are clearly not  totally equivalent to our simulation results which are  obtained for a free floating drop. 

In all calculations presented here aaj = 1 for all j ’ s  according to the  data of Paul (1962). 

5.1. Model validation 

To  our  knowledge, microgravity obtained data with C7Hl6 drops evaporating in N2 were reported only by Sato (1993) 

and Nomura et al. (1996). In their experiments 0.7 - 1 mm drops were suspended from a fiber of 200p diameter whose 

influence was not assessed; however, recent calculations (see Morin (1999)) indicate that  the influence of the fiber 

increases with increasing temperature  and pressure. For example, it was found that for drops of 1 mm diameter at 

300 K the  heat flux from the fiber  may  be - 7% and 10% of the  heat provided by the surrounding nitrogen at 473 

K and 0.1 MPa, and 673 K and 1 MPa, respectively.  Also not reported by Nomura et al. (1996) is the  ratio of the 
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I I N Y L S U I T ~  gravity by the normal gravity during the experiments as a function o f  t,irnc>; only average microgravity 

ratios of  for parabolic flights and lo-'' for drop towers are cited. The transimt value of the microgra\-ity ratio 

might  be important to ascertain when comparing numerical results and data since  Vieille et al. (1996) have  shown 

that if the magnitude of this  ratio is  in the range loe2 - buoyancy  effects are  still identifiable in the evaporation 

constant. 

The C7 H16 drop evaporation experiments of Chauveau et al. (1993) were conducted only in normal gravity. whereas 

their reported microgravity experiments were of burning drops. Therefore, our comparison focuses on the  data of 

Sato (1993) and Nomura et al. (1996), while also considering for  reference  (see Table 2) the more recent normal 

gravity data of Morin et al. (1999) for 1-1.5 mm drops,  instead of that of Chauveau et al. (1993). 

The simulations were performed for nominal initial conditions (superscript 0) matching the experimental data: 

Rj = 0.35 mm except for the comparison with Sato (1993)'s data which  was performed for @ = 0.5 mm, and 

T& = 300 K. The far field conditions are located at e = 4 mm where T, and p ,  are specified consistent with those 

of the experiments and YE = 0. The fluid drop is initially composed of pure heptane (T, = 540.3 K,p, = 2.76 MPa), 

while the surrounding is nitrogen (T, = 126.2 K, p ,  = 3.39 MPa);  in order to avoid a n  initial unphysical discontinuity, 

a  minute  amount of heptane exists initially in the  drop surroundings, its  distribution vanishing with increasing T .  

For the  same reason, although the fluid drop  temperature  and  outer fluid composition are assumed initially uniform, 

a  set of computational  initial conditions (i.e. spatial profiles of the variables) are  calculated for each simulation by 

satisfying the nominal initial conditions at  the domain boundaries and  the  boundary conditions at Rd. In practice 

this is  achieved by choosing target values  for 

where Rj/Rz << 1, and  iterate on the values  of vu, qT and the dependent variables at  the surface [Yf(RZ),   To(Rj) 

and F,,,] until convergence  is  achieved  or until a minimal deviation from the  targets is obtained. For example, at 

p = 0.1 MPa we initially choose q y  = vT = 1 in anticipation of the well known (Williams (1965)) quasi-steady 

analytic solution, and  the  iteration confirms these values at convergence. Another example is that of a calculation 

performed at p = 1 MPa where although  the  initial choice  is still qy  = qT = 1, the  initial conditions iterate converges 

with r l y  = qT = 0.88. As the initial pressure increases, qy  and qT depart  further form unity. It is these calculated 



S .  

111 all of the discussions below, ‘subcritical’ and ‘supercritical’ qualifications will be  used with respect to  the  heptane 

critical point, and not with respect to  the critical point of the mixture which  varies according to  the local composition. 

5.1.1. Determination of thermal  digusion  factors from high temperature  data 

As discussed previously, values of Q B K  are poorly known  for  most substances, except at  atmospheric conditions 

where they can be calculated from kinetic theory. Since we are here interested in calculations at considerably larger 

pressures, the question arises as how to calculate a g ~ .  For this purpose, the premise is that if it can be shown, for 

example, that CYIK is very small, in fact it may be considered negligible with respect to ( ~ B K  - Q I K )  in eq. 2.26 and 

then CYBK N “(Yh (see eq. 3.14). Since ah is calculated from thermodynamics, this would provide an approximate 

value  for C ~ B K  at each p for all (Yl, T )  conditions where 1 ~ ~ K / c Y *  I << 1 and a* max(y,,q I ah I .  The exact 

definition of a* may vary according to  the needs of the calculation; what is important is that a* represents in 

average the  magnitude of ah in the thermodynamic region of interest.  A similar premise may be made regarding 

Q B K .  The purpose of these high temperature  data comparisons is to explore whether either premise  is approximately 

correct. 

Shown  on Fig. la are (d /do )2  plots from our simulations portraying Nomura et al. (1996)’s experiments at high 

temperature (745 K) in the pressure range of 0.1 - 2  MPa. For consistency with optical measurements, in the 

simulations the location of the drop boundary is  defined as that of the maximum density  gradient.  In agreement with 

well  known theory (Williams (1965)), at 0.1  MPa the liquid/gas interface is found to  be precisely that of maximum 

density gradient. With increasing p the two locations still coincide  for all simulations in the range 0.1 - 10 MPa 

investigated in this work, but  the density gradient,  although still substantial, decreases across the boundary as p 

increases. 

All but two of our simulations were conducted with CYIK = 0.01; the remaining simulations were conducted with 

~ B K  = 0.01. Our 0.1 MPa  results with ( Y I K  = 0.01 capture  the linear part of the 0.1 MPa data very well but display 

a somewhat earlier d2-law behavior; it is unclear whether the non-coinciding part of the  data  and simulations fall 

within the experimental error since this error is not provided with the  data. In contrast,  the 0.1 MPa simulations with 

aBK = 0.01 capture  the  0.1  MPa during the early, heating period, but  departs  substantially from the data in the 

linear  regime. This behavior is initially puzzling  since lim,,o C Y ~ K  = CYKT and  thus one would expect that the low 
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prcssurc: bchavior will bo txttcr rendered nunlerically whew (11slc is specified. Our inttqmt,ation o f  the result,s is that, 

ovwl at low pressure n l ? ~  is not constant or small, and in fact is a function of T and Yl t,hat is better approximated 

by -(kh i n  t,he spatial region of strong mass fraction and temperature gradients (i.e. near the  drop  boundary) where 

t,he Soret and Dufour terms may be important. If this  statement is correct, then it should not be surprising that for 

small C ~ I K  the numerical simulations agree with the data since eq. 2.34  shows that Q B K  E -ah  when I a[K/a* I 

<< 1. To verify this conjecture, ah is plotted at 0.1 MPa as a function of Yl and T in Fig. lb.  It is  clear that for 

C X ~ K  = 0.01, I CXIK/CZ* 15 0(10-’), therefore justifying the premise. 

Similarly, comparisons between the 0.5 MPa data  and results from simulations with both ~ r g ~  and CYIK specified 

as 0.01  show clearly that  the ~ B K  = 0.01 results fall short of agreement with the data,  and in fact show a typical 

large increase in the evaporation time; this is typical of results obtained  with a g ~  = 0.01 at other pressures as well 

(see below). In  contrast,  the C ~ I K  = 0.01 results  capture the nonlinear portion of the curve very well with a small 

discrepancy in the  total evaporation time. To show that  the assumption 1 C Y I K / Q *  I << 1 holds for Q I K  = 0.01 at 0.5 

MPa, ah is displayed in Fig. IC; simple evaluations show that I C Y I K / C Y ~  15 O(10-3). 

Simulations and  data  at 2 MPa (see Fig. la) agree only during the  initial  time,  after which the simulations display 

t,he expected smooth variation consistent with  drop  heating, whereas the  data exhibit two discontinuities that can 

be explained only by the presence of the suspending fiber. Calculated slopes of the linear part of the curves, called 

the evaporation constant (Williams (1965)), K ,  are presented in Table 2 for comparison with the 0.1 and 0.5 MPa, 

CXIK = 0.01 results. Despite the presence of the suspending fiber in the experiments, there is  excellent agreement 

between simulations and  data. A similar comparison cannot be performed at 2  MPa since there is no evidence of 

linear behavior in the  data. 

5.1.2. Confirmation of thermal difision  factors  from  intermediate  temperatures  data 

Displayed in Fig. 2a are p = 2 MPa comparisons of simulation results at 655 K for various values of a I K ,  one 

simulation where CYBK instead of LYIK is prescribed, and Nomura et al. (1996)’s data  at 656 K. The numerical 

predictions are a very weak function of CYIK in the range -0.6 - 0.6 and agree remarkably well with the data during 

the  initial heat up period of the drop. Eventually, the  data shows a faster evaporation than our simulations, although 

the lack of error bars in the  data make it impossible to evaluate the  extent of the disagreement. It is also difficult 

to evaluate the influence of the fiber (during  the  experiment) on the evaporation process. However, results with 

CYBK = 0.01 clearly overestimate both  the growth of the  drop  during  the initial heat  up time and  the  drop evaporation 



~ rr,K/tr* I << 1 must hold as well. This conjecture is substantiated by plots of a h  displayed in Fig. 2b.  In fact,, contour 

plots of a h  at increasing pressure show that  the approximation I ~ ~ K / c Y *  I << 1 becomes increasingly justified for 

rw[K 5 O(l0"). 

Additional comparisons between numerical predlctions and  data is portrayed in Fig. 3 where comparisons are made 

in the range 0.1 - 2 MPa between simulations at 655 K with Q I K  = 0.01, and  data in the range 648 - 669 K. The 

initial heating time is again very  well reproduced by the simulations, except that  the predictions at 0.1 MPa display 

again an earlier d2-law behavior. The evaporation time is very  well reproduced at 0.1 MPa,  and less  well as the 

pressure increases. Since it is  difficult to quantify the influence of the suspending fiber as the pressure increases, we 

can qualify this comparison as very encouraging. 

Table 2 includes comparisons of K for this intermediary temperature regime, and shows excellent to good agreement 

between data  and predictions. 

This  study indicates that  the value of Q1KIc-k'" is indeed small and  that QBK N - a h  is correct. The assumption 

made in all calculations presented below  is that Q ~ K  has the same small value determined at high temperatures 

regardless of the (p ,T)  conditions, and  thus  that Q B K  N -ah  . This  assumption might not be entirely valid, as 

in general (Y IK  is a function of both p and T. This assumption and  the fact that  the  data is from suspended drop 

experiments whereas our calculations are for  free drops, might explain the 15-20% discrepancies (see  below and Table 

2) between data  and results from simulations. 

5.1.3. Comparison with data at low temperatures. 

The low temperature data of Nomura et al. (1996) and  Sat0 (1993) (Sato's data was approximated from his figure) 

is  shown in Fig. 4 along with our numerical predictions at 445 K, 470 K and 495 K using (YIK = 0.01. The temperature 

range for Nomura et al.  (1996) 's data is  466 - 493 K whereas Sat0 (1993)'s data was obtained at 445 K; the  data in 

Nomura et al. (1996) is  in the 0.1 - 5  MPa  range, whereas that of Sato (1993)  is at 2 MPa. The comparisons are very 

good at low p and  deteriorate as p increases. The predictions and  data (Nomura et al. (1996)) agree remarkably well 

at 0.1 and 0.5 MPa, whereas at  1 MPa  the evaporation time is slightly overpredicted by the simulations. Nevertheless, 

the calculated and measured evaporation constant (Table 2) show  very  good agreement at all  three pressures. The 

2 MPa numerical results approximate  the d2 experimental variation (Sato (1993)) fairly well, and  the agreement in 

the value of K (Table 2) is excellent. At p = 5  MPa, our simulation of a free drop shows an increased heating time, 



heat up time, although  the  rate of regression of the largest gradient location is surprisingly well predicted. Since at 

j MPa the conditions are  supercritical,  there is no evaporation and  the concept of evaporation  constant is irrelevant, 

although comparisons between the  rates of regression are  still meaningful. 

5.2. Small  drops  at high ambient  temperatures 

The above comparison between numerical predictions and  data shows that  the theory is capable of capturing  the 

physics of fluid drop behavior over a  substantial range of temperatures  and pressures in both  the subcritical and 

supercritical regimes. These comparisons were conducted for the relatively large drops that can be handled experi- 

mentally, although the regime of practical interest is that of smaller drops (for  which experiments  are not available). 

To address this regime of practical  interest, simulations relevant to Diesel engines and gas turbine engines drop sizes 

and ( p ,  T )  conditions were performed with Rod = 60 x cm, Tj,b = 325 K (the fluid drop  temperature is assumed 

initially uniform), RZ = 0.05 cm, T," = 800 K,  Y," = 0, and p ,  being either constant or specified as a function of t 

(see Fig.5a). These simulations are listed in Table 3. 

5.2.1. Temporal  variation 

Constant pressure simulations 

The temporal variation of significant variables is illustrated in Fig. 5 and  the lines/symbols used in the figures 

are those in Table 3. For these small drops, the 0.1 MPa behavior is exactly that predicted by the classical theory 

(Williams (1965)): Fig. 5b shows the totally linear behavior of dz as the drop  heats  up very rapidly. As p increases, 

the heating time occupies a larger time of the  drop lifetime (defined as the  time  during which one can identify a large 

density gradient) and the variation of dz is no longer initially linear. Eventually, at large pressures the  drop size (as  

measured by the location of the largest density gradient) initially increases before starting  to decrease. At  high p the 

linear variation is no longer obtained even after the initial heat up time. 

The increasing nonmonotonicity of the  temporal variation of dt with increasing pressure was experimentally ob- 

served by Nomura et al. (1996) and by Chauveau et al. (1993) for n-heptane in  air,  although  the  last  authors 

attributed it to  the influence of the  drop suspension fiber. Just as in the present simulations, Nomura et al. (1996) 

observed that  the  ratio of the heat-up time to  the  drop lifetime (defined there as the value  of the abscissa at  the 

intersection with the dz curve) increases with increasing p .  
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‘rllt? wolutioll of t,hv Ixmltlary temporat,ure (Fig. 5c) shows a segrc:gat,ioll iut,o t,lw lower telnpwat,ures achieved 

a t .  su0critic:al conditious whose rnaxinlum is limited by the boiling poiut, at the part,icular pressure, and  the higher 

t,t:rnperatures  achieved at supercritical conditions whose  maximum is limited only by the far  field  value. The emission 

rate displayed  in Fig. 5d has a true physical meaning only for the subcritical simulations where it represents the 

evaporation rate. The fact that the Ferns values  become eventually similar does not invalidate the previous statement 

that Fern, << pD, f f /Ar-  at supercritical conditions and  that Ferns >> pD,f f /Ar-  at strong evaporative subcritical 

conditions; what changes substantially as one transitions from  one  regime to another is the value of pD,f f /Ar- ,  not 

Ferns. The very large values of Ferns towards the end of each simulation are an artifact of the small drop size. 

Figures 5e and 5f illustrate  the  heptane mass fractions in the  drop side of the  boundary and on the pure nitrogen 

side of the boundary, respectively. At 0.1 MPa  the  drop composition remains pure  heptane  throughout  the  drop 

lifetime As the pressure increases, solubility effects  become  increasingly important  and nitrogen penetrates  the fluid 

drop,  thus explaining the decreasing value of the heptane mass fraction on the inner part of the drop boundary, 

Y l b -  = Yl(R2). At low pressures, Y1b- attains  an asymptotic behavior that is not seen for p > 8 MPa. The 0.1 MPa 

behavior displayed by the  heptane mass fraction on the  outer  part of the  drop boundary, %*+ E & (R:) is that of the 

classical (Williams (1965)) quasi-steady behavior at atmospheric p :  after a very short  and slight nonuniformity Y l b +  

remains constant  throughout the drop lifetime.  As p increases but remains subcritical, the initial unsteadiness relaxes 

to an approximately asymptotic state. In contrast, as p further increases and  the  supercritical regime  is reached, even 

after the relaxation of the initial  transient, Ylb+ continues to increase without reaching an asymptote. These results 

show that laminar diffusional mixing at supercritical conditions is  more  effective than quiescent evaporation at all 

subcritical pressures (see explanation below). 

To explore the variation of K with p ,  its variation is presented in Fig. 5g. It is clear from the plots that  it is 

only at 0.1 MPa that K can be  considered to  be truly a constant (after  the  short  initial  transient  behavior). In the 

remaining cases, the transients persist during an  important  part of the drop life time. Even at subcritical pressures, 

with increasing pressure the asymptotic behavior becomes  increasingly problematic. At supercritical pressures, K 

becomes the  rate of regression of the maximum density gradient boundary, and persists to increase with time. 

Ikansient pressure simulation 

The results for a transient pressure simulation are presented also  in  Fig. 5 for comparison with the constant 

pressure simulations. The imposed pressure on the  drop yields initially subcritical conditions (0.5  MPa)  and eventually 

supercritical conditions (4 MPa). Such calculations crossing the critical point are problematic because the critical 
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po iu t  is ;L t,llerlnotiyllalni~: singularity: C,, b ~ o m e s  infinite; cyu. the lattmt heat a~ltl t> lw surface tension become null; 

c tc : .  One of the  important characteristics of the critical point is that correlation lengths become  very large and  the 

integral conservation equations may  not be necessarily convertible to  a  differential  form;  this implies that  the Navier- 

Stokes equations may not be valid in the  critical/transcritical regime.  However, if the  emphasis of a calculation is not 

necessarily on the  criticalltranscritical behavior, one may still use this formalism and refrain from  giving too much 

credence to  the results around  the thermodynamic singularity. It should be additionally realized that calculations 

encompassing the critical point will  always  be numerically difficult, and  that their convergence will  be sensitive to 

the initial conditions. 

Given these warnings, our results show that  the  drop displays a behavior intermediate between the sub- and 

supercritical one and  that Ylb+(Fig. 5f) is somewhat reduced with respect to  that of the  drop which  was exposed 

constantly at the highest pressure of the  transient simulation. 

5.2.2. Spatial  variation  at  different pressures 

Comparisons of sub- versus supercritical variation 

The spatial variations of T ,  p,Y,  the compression factor 2 = p v / ( & T ) , a ~ ,  the  traditional Lewis number L e  = 

A/(nCpD) and L e e f f  are presented in Fig. 6 (a - g) for the 0.1 MPa simulation and equivalent results are shown in 

Fig. 7 (a - g)  for the 5 MPa case. 

As dscussed above, one of the major differences between sub- and supercritical behavior is evidenced by the  drop 

temperature variation which  is  negligible at 0.1 MPa, being limited by the boiling point at  that pressure; in  contrast 

the  drop  temperature continuously increases at 5 MPa. While the  heptane mass fraction remains unity within the 

drop at 0.1 MPa  and  the  drop surface regresses, a small amount of nitrogen dissolves into  the  drop at 5MPa and  the 

internal  drop  heptane maSs fraction is reduced from its  initial value of 1. Moreover,  while at  any given location in the 

vicinity of the  drop original boundary the  heptane mass fraction decreases with time at  0.1 MPa,  it increases with 

time at 5 MPa. This opposite trend is the result of the difference  between the vigorous evaporation which continuously 

enlarges the  drop sphere of influence, and  thus dilutes the amount of heptane, and  the slow supercritical diffusion 

process  which slightly contracts temporarily the sphere of  influence  before an asymptotic recovery of its original 

value. This change in Re is also affecting the density which  is substantially larger outside of the drop at 5 MPa. 

The compression factor, 2, and mass diffusion factor, ay~, are thermodynamic quantities  that characterize depar- 

tures from the perfect gas behavior and  from ideal mixtures, respectively; for a  perfect gas 2 = 1 and for an ideal 
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rrlixt,urc! a l l  = 1. As cxpoc:t,d, at 0.1 MPa tllc conlprcssion factor is unity ill t h e  gW. a11d o( lo-") in the drop which 

is a value characterizing liquids. In contrast, at 5 hIPa  the compression factor decreases from the unity value outside 

o f  thc drop  to N 0.25 inside the  drop showing that  the  drop is no longer a liquid despite  its liquid-like density. At 

0.1 MPa,  the mass diffusion factor is unity everywhere except at  and very  close to  the  drop surface where there is 

a mixture of heptane and nitrogen. In contrast, at 5 MPa  there  are  departures from the unity value  in the entire 

field, and these departures increase with time as nitrogen continues to dissolve  in the  drop  and  the mass fraction of 

heptane increases in the initially pure nitrogen region (as discussed above). 

The variations of Le and Le,ff are displayed in Figs. 6f and 6g  for the 0.1 MPa simulations and Figs. 7f and 7g 

for the 0.5 MPa predictions. At 0.1 MPa, Le and Le,ff are identical inside the  drop showing that indeed Le, f f  

reaches the correct limit for a single substance, a uniform temperature,  and  atmospheric conditions. However,  even 

at atmospheric conditions one observes  differences from 50% to a factor of 2 - 3 between Le and Le,ff in regions 

where there is a mixture of substances and there  are  temperature gradients. At 5 MPa  these differences increase 

even further: Le and Le,ff are initially identical, but Le decreases whereas Le,ff increases with time from the 

initial condition. Mistakenly, the Le values inside the  drop  are typical of an ideal gas (Le 5 l), whereas Le,ff 

correctly indicates the existence of a dense gas (Le,ff > 1). The incorrect (correct) Le ( L e , f f )  predictions have both 

a fundamental and a  practical significance, in that engineering estimates of combustor dimensions are often based 

upon calculations of nondimensional numbers such as the Lewis number. The present simulations show that classical 

evaluations of the Lewis number may  give erroneous results. 

Spatial profiles comparisons 

Presented in Fig. 8 (a - d)  are  spatial variations of T,  Yl, p ,  and at 3 x s, for 0.1, 2, 4, 8 MPa  and  the 

transient  run;  results  obtained at 10 MPa  are  not  illustrated because of their similarity with those at 8 MPa. The 

selected time is such that  the leftover drop mass is small, and  the choice of the pressures is such that  the atmospheric 

pressure  is retained as a reference, the critical point is 'framed' by two pressures, the pressure is increased by a 

constant ratio,  and  the  entire range is  relevant to  both gas turbine and Diesel engines. Parallel plots are presented 

in Fig. 9 at  the  output time which  is  closest to  the half-mass time (for the selected times, the maximum error with 

respect to the exact half-mass is 2%) to explore the possibility of profile similarity at the same stage in the  drop 

lifetime. Clearly, such a similarity does not exist and  it  can be  concluded that  it is not only the time scales that 

change as the pressure increases from subcritical to supercritical,  but it is the general behavior of the  drop  that is 

different. 
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AltllougIl the half I I l k w  t i r m  is approxirnately the same for  most  iIIrlstrwt,td sitrltll;hms (for 0.1, 2, 4, Y hIPa n11d 

t , lw tmnsient case it occurs at respectively 1 . 2 5 ~ 1 0 - ~ ,   1 . 7 5 ~ 1 0 - ~ ~   1 . 7 5 ~ 1 0 - ~ ,   1 . 7 5 ~ 1 0 "  and 1 .6~10"  s), at a 

fixed time close to the  drop disappearance the maximum gradient region is variable whereas at  the half mass time 

it is more similar. We conclude that pressure specific differentiation in  size occurs when the  drop becomes relatively 

small, and therefore data must be obtained close to  the time of drop disappearance in order to identify distinctive 

pressure dependent behavior. In  contrast to p which  is more distinctive as  a function of p at larger times, T displays a 

pressure specific behavior at all times; therefore, a temperature measurement will always be a good relative pressure 

indicator. The  magnitude variation of ( Y D ,  which  is a good indicator of (diffusion/convective) mixing, displays much 

more differentiation close to  the drop  disappearance than  at the half mass time, and  the low values attained at  8 

MPa show that  the  drop might be close to  its critical point for the  particular composition at that location. 

6. Conclusions 

A model of fluid behavior under both sub- and supercritical thermodynamic conditions has been discussed with 

particular emphasis on the different physics according to  the initial conditions with respect to  the drop  substance 

critical point. The model has been  exercised  for a fluid drop for  which data  are available for model validation. Initially 

the  drop is  colder than  its surroundings whose far field conditions are prescribed. In the subcritical regime and for 

large emission rates from the  drop,  there exists a film  layer  in the inner part of the  drop surface and  the solution of 

the equations has a convective-diffusive character.  In the supercritical regime, there is no material surface to follow, 

and  this introduces an indeterminacy in the boundary conditions. To  resolve this indeterminacy one must follow an 

arbitrary  boundary of interest which  is  chosen here to be that of the  initial fluid drop. The solution has then  a  pure 

diffusive character, and from this solution we calculate the location of the highest density gradient which we identify 

with the optically observable fluid drop. 

Experimental validation of the model requires that substance properties be accurately specified, and we therefore 

analyzed the definitions of different  transport properties. Our analysis shows that  both  the Irwing-Kirkwood and  the 

Bearman-Kirkwood defined transport  parameters may  differ  from the measurable values, and we define transport 

parameters that correctly converge to  the kinetic theory values in the low pressure limit. 

The model was exercised for a  heptane  drop in nitrogen because of the existing data available for comparison. 

Simulations obtained with this model were validated with microgravity experimental data for large drops over a wide 

range of temperatures and pressures. The large temperature data were  used to  determine the value of the  thermal 



results and  data  are  attributed  to both  the influence of the suspending fiber in the experiments which affects heat 

transfer and  to  the insufficient  level of microgravity which  affects  buoyancy, as well as to  uncertainties in the values 

of the  thermal diffusion factor. The numerical predictions show that  the traditional &-law  is  obeyed  only  in the 

subcritical regime. As the pressure is increased, 6' becomes nonmonotonic with time,  with a slope whose magnitude 

increases as a function of time. Thus, we initially identify a heating period during which the  drop size  may increase, 

followed  by a period during which the size is continuously reduced. The duration of the heat-up period increases with 

far  field pressure. 

Numerical predictions were also made for the small drops of practical interest for  which data is not available. In 

the simulations, the heptane drops were initially at 325 K whereas the surrounding nitrogen was at 800 K. Results 

were obtained from simulations at constant far field pressure in the range 0.1 - 10 MPa,  and for a far  field transient 

pressure crossing the critical point. Comparisons between subcritical  and  supercritical simulations show that  the  drop 

temperature increases only slightly at atmospheric conditions and remains constant  thereafter (being constrained by 

the boiling point), whereas it continuously increases at supercritical conditions. This,  and  the difference  between 

vigorous evaporation coupled to strong convection at atmospheric conditions and slow  diffusion at supercritical 

conditions explains the larger heptane mass fraction near the drop boundary at  supercritical conditions. Despite 

the liquid like density, the fluid drop under supercritical conditions has properties similar to those of a dense gas. 

It is  shown that  the classically calculated Lewis number cannot differentiate between liquid and dense gas, but an 

effective  Lewis number previously derived correctly predicts the characteristics of supercritical behavior. Results 

obtained from simulations with a  transient far field pressure crossing the  heptane critical point show that  the drop 

combines characteristics of both  subcritical and supercritical behavior. It is also indicated that transcritical results 

should be interpreted with caution since due to  the very large correlation lengths, it is doubtful that  the Navier-Stokes 

equations hold in that regime. 

ACKNOWLEDGMENT 

This research was conducted at the Jet Propulsion Laboratory under sponsorship from the National Aeronautics 

and Space Administration,  the Lewis Research Center with Dr. Daniel L. Bulzan as technical contract monitor. 

His continuing interest and  support  are  greatly  appreciated. We also want to  thank Prof. Hiroshi Nomura of Nihon 



A N  ALL-PRESSURE  FLUID  DROP  MODEL  APPLIED TO A BINARYMI'YTURE:  HEPTANE  IN NITROGDT 

University in Chiba, .Japan, and Prof. Iskender G~ka lp  o f  the Centre National de la Recherche  Scientifique in Orleals, 

France, for providing us with their data. 

R E F E R E N C E S  

American Petroleum  Institute, Technical Data Book - Petroleum Refining, 5th  edition, 1992 

Anderson, D. A., Tannehill, J .  C.  and  Pletcher,  R. H. 1984 Computational  Fluid  Mechanics  and  Heat  Transfer Hemisphere 

Publ.  Corp., N. Y .  

Bert,  J.  and  Dupuy-Philon, J. 1997 Microgravity measurement of the Soret effect in a molten salts  mixture J.  Phys.:  Condens. 

Matter 9, 11045-11060 

Bird, R. B, Stewart,  W. E. and Lightfoot, E. N. 1960 Ransport  Phenomena John Wiley and  Sons, Inc. 

Bou-Ali, M. M., Ecenarro, O., Madariaga, J. A.,  Santamaria, C. M. and Valencia, J.  J. 1998 Thermogravitational  measurements 

of the Soret coefficient of liquid mixtures J.  Phys.:  Condens.  Matter 10, 3321-3331 

Chapman, S. and Cowling, T.   G.  1970 The  Mathematical  Theory of Nonuniform  Gases Cambridge University Press,  Cambridge 

Chauveau, C., Chesnau, X. and  Gakalp, I. 1993 Burning  characteristics of n-heptane  droplets AIAA 93-0824 31st Aerospace 

Sciences  Meeting,  Reno NV. 

Delplanque, J-P. and Sirignano, W. A. 1993 Numerical study of the  transient vaporization of an oxygen droplet at sub- and 

super-critical  conditions Int .  J .  Heat  Mass  Tmnsfer 36(2), 303-314 

Ecenarro, O., Madariaga, J .  A., Navarro, J.,  Santamaria,  C. M . ,  Carrion, J .  A. and  Saviron, J. M. 1990 Fickian and  thermal 

diffusion coefficients from liquid thermogravitational columns J. Phys.:  Condens.  Matter 2, 2289-2296 

Ecenarro, O., Madariaga, J. A.,  Navarro, J., Santamaria,  C. M., Carrion, J .  A. and  Saviron, J. M. 1993 Thermogravitational 

separation  and  the  thermal diffusion factor near  critical  points in binary liquid mixtures J. Phys.:  Condens.  Matter 5, 

2289-2294 

Givler, S. D. and  Abraham, J. 1996 Supercritical  droplet vaporization and combustion studies Pmg. Energy  Combust. Sci 22, 

1-28 

Haldenwang, P., Nicoli, C.  and  Daou,  J. 1996 High pressure  vaporization of LOX droplet crossing the  critical condition Int .  

J .  Heat  Mass  Transfer 39(16), 3453-3464 

Harstad, K. and Bellan, J 1998a. Isolated fluid oxygen drop behavior in fluid hydrogen at rocket chamber pressures Int .  J.  

Heat  Mass  Tmnsfer, 41, 3537-3550 

Harstad, K.  and Bellan, J. 1998b The Lewis number under supercritical  conditions Znt. J. Heat  Mass  Transfer 42, 961-970 

Harstad, K .  G.  , Miller, R. S., and Bellan, J .  1997 Efficient high pressure state  equations A .  I. Ch. E., 43(6), 1605-1610 

Hirshfelder, J. O., Curtis,  C. F. and  Bird, R. B. 1964. Molecular  Theory of Gases  and  Liquids, John Wiley and  Sons, Inc 

Keizer, J. 1987 Statistical  thermodynamics of nonequilibrium  processes, Springler-Verlag, New York 



2vi. f i u w t u d  ( L T L ~  -1. Bcdlnn . J tJ t  ProprLlsiorr, Ld )o~ra toq  Califo,rnm h s t i t u t e  o , f  7 ' t x h d o g ~ ~  Pascderla, c.4 91 109 

krlltlip, S., Dtmn, A .  K .  ~ l t l  Cltpta, S.  C. 1983 Symmetric diffusion and t,horm;tl  tliffltsiotl ratios for a ternary gas nlixturc J .  

Phys. B: At.  Mol. Phys. 16, 2613-2618 

Law, C. K .  and Law, H .   K .  1982 A d2-law for multicomponent  droplet  vaporization and  combustion AIAA Journal 20, 4, 

522-527 

Li, W. B., Segre, P.  N.,  Sengers, J .  V. and  Gammon, R. W. 1994 Non-equilibrium fluctuations in  liquids and liquid mixtures 

subjected  to a stationary  temperature  gradient J. Phys.: Condens. Matter 6, A119- A124 

Morin,  C. 1999 Studies on the influence of pressure and  temperature on the vaporization of hydrocarbon  droplets  Ph.D. thesis 

Centre National de la Recherche Scientifique, Orkans,  France 

Morin, C.,  Chauveau,  C.  and Gokalp, 1.1999 Studies on the influence of pressure and  temperature  on  the vaporization of 

n-heptane  droplets ILASS-Europe conference 

Nomura,  H., Ujiie, Y . ,  Rath, H. J., Sato, J.  and Kono, M. 1996 Experimental  study on high pressure  droplet  evaporation using 

microgravity conditions 26th Symp.  (Int.) on Comb., 1267-1273 

Paul, B. 1962 Compilation of evaporation coefficients ARS  J., 32, 1321-1328 

Prausnitz, J., Lichtenthaler,  R.  and  de Azevedo, E. 1986 Molecular themodynamics  for fluid-phase equilibrium Prentice -Hall, 

Inc 

Reid, R. C.,  Prausnitz, J. M. and Polling, B. E. 1987 The Properties of Gases and Liquids, 4th  Edition, McGraw-Hill Book 

Company. 

Roache, P. J. 1976 Computational fluid dynamics Hermosa Publishers, Albuquerque, NM. 

Sarman, S. and  Evans,  D.  J.1992  Heat flux and mass diffusion in  binary Lennard-Jones  mixtures Phys. Rev. A45(4), 2370-2379 

Sato, J. Studies on droplet  evaporation  and combustion in high  pressures AIAA 93-0813 31" Aerospace Sciences Meeting Jan. 

11-14, Reno, NV 

Vieille, B., Chauveau, C., Chesnau, X, Ode'ide, A. and Gdkalp, I. 1996 High-pressure droplet  burning  experiments in micro- 

gravity 26th Symp.  (Int). on Combustion, 1259-1265 

Vogelsang, R. and Hoheisel, J. 1988 The Dufour and  Soret coefficients of isotopic mixtures from  equilibrium Molecular- 

Dynamics calculations J. Chem. Phys. 89, 1588-1591 

Williams, F. A.1965 Combustion Theory, Addison-Wesley 

Yang, V., Lin, N .  and  Shuen, J-S. 1994 Vaporization of liquid oxygen (LOX) droplets in supercritical hydrogen  environments 

Combust. Sci. and Tech. 97, 247-270 



A I V  ALL-PRESSUNE  FLUID  DROP  NODEL  APPLIED TO A B1NARY hII.YTIJRE: HEPTANE I N  N I T R O G W  

17.06 (300 bar) 125% 132% 

TABLE 1. Percent error in the calculation of thermal  conductivity of propane if calculated as for a liquid instead of a fluid. 



10.1 1655 10.306 (Nom) 10.45 (Mor) (0.280 10.92 I 

10.320  10.90 

10.5  I745 (0.437  (Nom) I 10.390  10.89 

10.135  10.98 

11.0 1655  10.424 (Nom) I 10.330  10.78 

12.0 (655 10.475 (Nom) I 10.360  10.76 

12.0 1745 10.4 - 1.7  (Nom) I 10.450 I -  

TABLE 2.  Maximum regression rate of the maximum  density gradient location, K in mm2/s,  obtained from the  current model 

(ap), Nomura et  al.’s, 1996,  microgravity experimental  data  (Nom),  Sato’s, 1993,  microgravity and  normal gravity experimental 

data  (Sat),  and Morin et al.’s,  1999,  normal gravity  data  (Mor).  The Nomura et a1.k and Morin et al.’s data were provided 

by the  authors,  and  Sato’s values were read on their  graph following the directions given in their  paper.  In  the simulations 

= 300K and do = 0.7mm, while Nomura et al.’s do was 0.6 - 0.8mm,  Sato’s was lmm,  and Morin et al.’s was 1 - 1.5  mm. 
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I I  p , ,  izl Pa LinesjSyrnbols 

10.1 I """ 

11.0 I -.-.-.- I 

~~ 

15.0 I -.-.-.- I 

I 
TABLE 3.  List of simulations  conducted with drops of 60 micron radius. The  far field temperature was 800 K and  constant, 

and  the  initial  drop  temperature was 325 K. 



field T, and p e  are specified as in the experiments. Simulations at T, = 745 K and p , :  O.lMPa, CY[K = 0.01-; 

O.1MPa .; 749 K and 0.5MPa A ;  746K and 2MPa V. 

(b) Contour plots of ah defined  in  eq. 2.27  for p = 0.1 MPa. 

(c)  Contour plots of f fh  defined  in  eq.  2.27  for p = 0.5  MPa. 

Figure 2. (a) Intermediary  temperature  comparisons at 2MPa. RZ = 0.35 mm; R! = 4 mm, y," = 0 and G , b  = 300 

K. Simulations at 655 K; CYIK = 0.01 -; 0.3 - - - ; - 0.3 - . --.; - 0.6 - . .-;0.6 - -; CYBK = 0.01 -0-. Data  at 

656 K: .. 
(b) Contour plots of ah defined  in  eq.  2.27  for p = 2 MPa. 

Figure 3. Intermediary  temperature comparisons. RZ = 0.35 m m ;  R: = 4 m m ,  Y," = 0 and = 300 K. 

Simulations at 655 K: O.1MPa -; O.5MPa - - - -; lMPa - . --.; 2MPa - -_ Data: 648 K and O.1MPa M; 655 K 

and  0.5MPa A; 669 K and  lMPaV; 656 K and 2MPa 0 .  

Figure 4.  Low temperature comparisons. = 0.35 mm except at 445 K where R: = 0.5 mm; e = 4 m m ,  Y," = 0 

and Td,b = 300 K. Simulations at 470 K: 0.1 MPa - ; 0.5 MPa - - - ; 1 MPa - . -.; at 445 K and 2 MPa - -; 

at 495 K and 5 MPa - . .-. Data: 471 K and 0.1 MPa .; 468 K and 0.5 MPa A ;  466 K and 1 MPa V ;  445 K and 2 

MPa 0; 452 K and 2MPa b; 493 K and 5 MPa 0 .  

Figure 5. Temporal variations from simulations with = 60 x  mm, Td,b = 325 K, RZ = 0.5 mm, = 800 

K,  and Y," = 0. The legend is shown  in Table 3. (a) p,,  (b) (d /do )2 ,  (c) T b ,  (d) F.,,, (e) q b - ,  ( f )  X b + ,  and  (g) K.  

Figure 6. Spatial variations of (a) T,  (b) p ,  (c) Y,  (d) 2, (e) Q ~ D ,  (f)  Le, and  (g) Le,ff for R: = 60 x mm, 

T:,b = 325 K, RZ = 0.5  mm, T," = 800 K, Y," = 0 and p ,  = 0.1 MPa. Legend  for t is in s. 

Figure 7. Spatial variations of (a) T ,  (b) p ,  (c) Y1, (d) 2, (e) CYD, (f)  Le, and  (g) Le,ff for R: = 60 x  mm, 

Td,b = 325 K,  R! = 0.5 mm, T," = 800 K, Y," = 0 and p ,  = 5 MPa.  Legend  for t is  in s. 

Figure 8. Spatial variations at 3 ~ 1 0 - ~  s of (a) T ,  (b) p ,  (c) Y1 and  (d) ag for R: = 60 x mm, c , b  = 325 K, 

RZ = 0.5 mm, = 800 K, Y," = 0 and p ,  = 0.1 -, 2 - - - -, 4 - . -., 8 - -, MPa  and  transient - . .-. 

Figure  9.  Half-mass spatial variations of (a) T ,  (b) p ,  (c) Yl and (d) C Y D  for R: = 60 x  mm, T:,b = 325 K, 

RZ = 0.5 mm, T," = 800 K, Y," = 0 and p ,  = 0.1 -,2 - - - - , 4  - .  - . ,  8 - -, MPa  and transient - .  
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